1、高速、
機(jī)床向高速化方向發(fā)展,不但可大幅度提高加工效率、降低加工成本,而且還可提高零件的表面加工質(zhì)量和精度。超高速加工技術(shù)對(duì)制造業(yè)實(shí)現(xiàn)、、低成本生產(chǎn)有廣泛的適用性。
20世紀(jì)90年代以來(lái),歐、美、日各國(guó)爭(zhēng)相開(kāi)發(fā)應(yīng)用新一代高速數(shù)控機(jī)床,加快機(jī)床高速化發(fā)展步伐。高速主軸單元(電主軸,轉(zhuǎn)速15000-100000r/min)、高速且高加/減速度的進(jìn)給運(yùn)動(dòng)部件(快移速度60~120m/min,切削進(jìn)給速度高達(dá)60m/min)、高性能數(shù)控和伺服系統(tǒng)以及數(shù)控工具系統(tǒng)都出現(xiàn)了新的突破,達(dá)到了新的技術(shù)水平。隨著超高速切削機(jī)理、超硬耐磨長(zhǎng)壽命刀具材料和磨料磨具,大功率高速電主軸、高加/減速度直線電機(jī)驅(qū)動(dòng)進(jìn)給部件以及高性能控制系統(tǒng)(含監(jiān)控系統(tǒng))和防護(hù)裝置等一系列技術(shù)領(lǐng)域中關(guān)鍵技術(shù)的解決,為開(kāi)發(fā)應(yīng)用新一代高速數(shù)控機(jī)床提供了技術(shù)基礎(chǔ)。
目前,在超高速加工中,車削和銑削的切削速度已達(dá)到5000~8000m/min以上;主軸轉(zhuǎn)數(shù)在30000轉(zhuǎn)/分(有的高達(dá)10萬(wàn)r/min)以上;工作臺(tái)的移動(dòng)速度(進(jìn)給速度):在分辨率為1微米時(shí),在100m/min(有的到200m/min)以上,在分辨率為0.1微米時(shí),在24m/min以上;自動(dòng)換刀速度在1秒以內(nèi);小線段插補(bǔ)進(jìn)給速度達(dá)到12m/min。
2、高精度
從精密加工發(fā)展到超精密加工,是世界各工業(yè)強(qiáng)國(guó)致力發(fā)展的方向。其精度從微米級(jí)到亞微米級(jí),乃至納米級(jí)(<10nm),其應(yīng)用范圍日趨廣泛。
當(dāng)前,在機(jī)械加工高精度的要求下,普通級(jí)數(shù)控機(jī)床的加工精度已由±10μm提高到±5μm;精密級(jí)加工中心的加工精度則從±3~5μm,提高到±1~1.5μm,甚至更高;超精密加工精度進(jìn)入納米級(jí)(0.001微米),主軸回轉(zhuǎn)精度要求達(dá)到0.01~0.05微米,加工圓度為0.1微米,加工表面粗糙度Ra=0.003微米等。這些機(jī)床一般都采用矢量控制的變頻驅(qū)動(dòng)電主軸(電機(jī)與主軸一體化),主軸徑向跳動(dòng)小于2μm,軸向竄動(dòng)小于1μm,軸系不平衡度達(dá)到G0.4級(jí)。
高速高精加工機(jī)床的進(jìn)給驅(qū)動(dòng),主要有“回轉(zhuǎn)伺服電機(jī)加精密高速滾珠絲杠”和“直線電機(jī)直接驅(qū)動(dòng)”兩種類型。此外,新興的并聯(lián)機(jī)床也易于實(shí)現(xiàn)高速進(jìn)給。
滾珠絲杠由于工藝成熟,應(yīng)用廣泛,不僅精度能達(dá)到較高(ISO3408 1級(jí)),而且實(shí)現(xiàn)高速化的成本也相對(duì)較低,所以迄今仍為許多高速加工機(jī)床所采用。當(dāng)前使用滾珠絲杠驅(qū)動(dòng)的高速加工機(jī)床zui大移動(dòng)速度90m/min,加速度1.5g。
滾珠絲杠屬機(jī)械傳動(dòng),在傳動(dòng)過(guò)程中不可避免存在彈性變形、摩擦和反向間隙,相應(yīng)地造成運(yùn)動(dòng)滯后和其它非線性誤差,為了排除這些誤差對(duì)加工精度的影響,1993年開(kāi)始在機(jī)床上應(yīng)用直線電機(jī)直接驅(qū)動(dòng),由于是沒(méi)有中間環(huán)節(jié)的“零傳動(dòng)”,不僅運(yùn)動(dòng)慣量小、系統(tǒng)剛度大、響應(yīng)快,可以達(dá)到很高的速度和加速度,而且其行程長(zhǎng)度理論上不受限制,定位精度在高精度位置反饋系統(tǒng)的作用下也易達(dá)到較高水平,是高速高精加工機(jī)床特別是中、大型機(jī)床較理想的驅(qū)動(dòng)方式。目前使用直線電機(jī)的高速高精加工機(jī)床zui大快移速度已達(dá)208 m/min,加速度2g,并且還有發(fā)展余地。
3、高可靠性
隨著數(shù)控機(jī)床網(wǎng)絡(luò)化應(yīng)用的發(fā)展,數(shù)控機(jī)床的高可靠性已經(jīng)成為數(shù)控系統(tǒng)制造商和數(shù)控機(jī)床制造商追求的目標(biāo)。對(duì)于每天工作兩班的無(wú)人工廠而言,如果要求在16小時(shí)內(nèi)連續(xù)正常工作,*率在P(t)=99%以上,則數(shù)控機(jī)床的平均*運(yùn)行時(shí)間MTBF就必須大于3000小時(shí)。我們只對(duì)一臺(tái)數(shù)控機(jī)床而言,如主機(jī)與數(shù)控系統(tǒng)的失效率之比為10:1(數(shù)控的可靠比主機(jī)高一個(gè)數(shù)量級(jí))。此時(shí)數(shù)控系統(tǒng)的MTBF就要大于33333.3小時(shí),而其中的數(shù)控裝置、主軸及驅(qū)動(dòng)等的MTBF就必須大于10萬(wàn)小時(shí)。
當(dāng)前國(guó)外數(shù)控裝置的MTBF值已達(dá)6000小時(shí)以上,驅(qū)動(dòng)裝置達(dá)30000小時(shí)以上,但是,可以看到距理想的目標(biāo)還有差距。
4、復(fù)合化
在零件加工過(guò)程中有大量的無(wú)用時(shí)間消耗在工件搬運(yùn)、上下料、安裝調(diào)整、換刀和主軸的升、降速上,為了盡可能降低這些無(wú)用時(shí)間,人們希望將不同的加工功能整合在同一臺(tái)機(jī)床上,因此,復(fù)合功能的機(jī)床成為近年來(lái)發(fā)展很快的機(jī)種。
柔性制造范疇的機(jī)床復(fù)合加工概念是指將工件一次裝夾后,機(jī)床便能按照數(shù)控加工程序,自動(dòng)進(jìn)行同一類工藝方法或不同類工藝方法的多工序加工,以完成一個(gè)復(fù)雜形狀零件的主要乃至全部車、銑、鉆、鏜、磨、攻絲、鉸孔和擴(kuò)孔等多種加工工序。就棱體類零件而言,加工中心便是zui典型的進(jìn)行同一類工藝方法多工序復(fù)合加工的機(jī)床。事實(shí)證明,機(jī)床復(fù)合加工能提高加工精度和加工效率,節(jié)省占地面積特別是能縮短零件的加工周期。
5、多軸化
隨著5軸聯(lián)動(dòng)數(shù)控系統(tǒng)和編程軟件的普及,5軸聯(lián)動(dòng)控制的加工中心和數(shù)控銑床已經(jīng)成為當(dāng)前的一個(gè)開(kāi)發(fā)熱點(diǎn),由于在加工自由曲面時(shí),5軸聯(lián)動(dòng)控制對(duì)球頭銑刀的數(shù)控編程比較簡(jiǎn)單,并且能使球頭銑刀在銑削3維曲面的過(guò)程中始終保持合理的切速,從而顯著改善加工表面的粗糙度和大幅度提高加工效率,而在3軸聯(lián)動(dòng)控制的機(jī)床無(wú)法避免切速接近于零的球頭銑刀端部參予切削,因此,5軸聯(lián)動(dòng)機(jī)床以其*的性能優(yōu)勢(shì)已經(jīng)成為各大機(jī)床廠家積極開(kāi)發(fā)和競(jìng)爭(zhēng)的焦點(diǎn)。
zui近,國(guó)外還在研究6軸聯(lián)動(dòng)控制使用非旋轉(zhuǎn)刀具的加工中心,雖然其加工形狀不受限制且切深可以很薄,但加工效率太低一時(shí)尚難實(shí)用化。
6、智能化
智能化是21世紀(jì)制造技術(shù)發(fā)展的一個(gè)大方向。智能加工是一種基于神經(jīng)網(wǎng)絡(luò)控制、模糊控制、數(shù)字化網(wǎng)絡(luò)技術(shù)和理論的加工,它是要在加工過(guò)程中模擬人類專家的智能活動(dòng),以解決加工過(guò)程許多不確定性的、要由人工干預(yù)才能解決的問(wèn)題。智能化的內(nèi)容包括在數(shù)控系統(tǒng)中的各個(gè)方面:
為追求加工效率和加工質(zhì)量的智能化,如自適應(yīng)控制,工藝參數(shù)自動(dòng)生成;
為提高驅(qū)動(dòng)性能及使用連接方便的智能化,如前饋控制、電機(jī)參數(shù)的自適應(yīng)運(yùn)算、自動(dòng)識(shí)別負(fù)載自動(dòng)選定模型、自整定等;
簡(jiǎn)化編程、簡(jiǎn)化操作的智能化,如智能化的自動(dòng)編程,智能化的人機(jī)界面等;
智能診斷、智能監(jiān)控,方便系統(tǒng)的診斷及維修等。
世界上正在進(jìn)行研究的智能化切削加工系統(tǒng)很多,其中日本智能化數(shù)控裝置研究會(huì)針對(duì)鉆削的智能加工方案具有代表性。